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A comprehensive investigation of two acoustic feature sets for English stop consonants spoken
“in syllabie initial position was conducted to determine the relative invariance of the features
that cue place and voicing. The features evaluated were overall spectral shape, encoded as the
cosine transform coefficients of the nonlinearly scaled amplitude spectrum, and formants. In
addition, features were computed both for the static case, i.e., from one 25-ms fraine starting at
the burst, and for the dynamic case, i.e., as parameter trajectories over several frames of speech
data. All features were evaluated with speaker-independent automatic classification
experiments using the data from 15 speakers to train the classifier and the data from 15
different speakers for testing. The primary conclusions from these experiments, as measured
via automatic recognition rates, are as follows: (1) spectral shape features are superior to both
formants, and formants plus amplitudes; (2) features extracted from the dynamic spectrum
are superior to features extracted from the static spectrum; and (3) features extracted from the
speech signal beginning with the burst onset are superior to features extracted from the speech

signal beginning with the vowel transition. Dynamic features extracted from the smoothed
spectra over a 60-ms interval timed to begin with the burst onset appear to account for the
primary vowel context effects. Automatic recognition results for the 6 stops (93.7%) based on
20 features was better than the rates obtained with human listeners for a 50-ms segment
(89.9%) and only slightly worse than the rates obtained by human listeners for a 100-ms
interval (96.6%). Thus the basic conclusion from our work is that dynamic spectral shape
features are acoustically invariant cues for both place and voicing in initial stop consonants.

PACS numbers: 43.72.Ar, 43.71.Es, 43.72.Ne

INTRODUCTION

The identification of invariant acoustic correlates for
stop consonants remains one of the most challenging prob-
lems in acoustic-phonetic research. In numerous studies,
speech scientists have investigated basic questions such as
the relative importance of the burst and the transition in
providing stop information, whether the information is pri-
marily context invariant or whether it depends on the adja-
cent vowel, and whether the cues are primarily static (i.e.,
dependent on features extracted from one speech frame sam-
pled at the beginning of the signal) or dynamic (i.e., depen-
dent on features extracted from several frames of the speech
signal). Clear-cut answers have been difficult to find. In ear-
1y work, Fischer-Jorgensen (1954) showed that the effec-
tiveness of burst cues depends on both the stop and the vow-
el. For example, the burst of /b/ and /g/ appears to signal
the stop identity before the vowels /i/ and /u/ but not /a/,
whereas the /d/ burst signals the stop before /i/ but not
before /a/ and /u/. Experiments with synthetic speech at
Haskins Laboratory indicated that the formant transitions

.that follow the release burst encode the primary acoustic
cues for place of articulation in initial stop consonants (De-
lattre et al., 1955; Liberman et al., 1954; Liberman ef al.,
1967). However, since the formant transition patterns vary
greatly depending on the vowel, these cues presumably are
highly dependent on the vowel. Other studies, using tape
splicing experiments, have shown that the burst section of
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the waveform contains sufficient cues for stop consonants
and that these cues are primarily independent of the follow-
ing vowel (Cole and Scott, 1974a, 1974b). In contrast to the
claims of Cole and Scott, Dorman et al. (1977), who also
used tape splicing experiments, claimed that burst and for-
mant transitions are functionally equivalent (complement
each other) context-dependent cues to stop consonants.
Schouten and Pols (1983), who conducted a perceptual
study on Dutch stops similar to the study by Dorman et al.,
emphasized that the initial burst carries more information
than the vocalic transition, for any vowel context, for both
unvoiced and voiced stops.

More recent studies with English stops claim that the
global shape of the spectrum sampled over the first 20-50 ms
of the speech waveform contains acoustically invariant cues
to place of articulation in stop consonants, across vowel con-
text and talkers (Stevens and Blumstein, 1978, 1981; Blum-
stein and Stevens, 1979, 1980; Kewley-Port, 1983; Kewley-
Port et al., 1983; Kewley-Port and Luce, 1984 ). However,
while these investigators have agreed that the cues are en-
coded in the global shape of the spectrum and are invariant
across vowel context and talkers, they have disagreed upon
the form of these cues. Stevens and Blumstein initially ar-
gued that the cues are encoded in the global shape of one
static spectrum computed from one 25.6-ms speech frame
sampled at the release burst of each stimulus (Stevens and
Blumstein, 1978; Blumstein and Stevens, 1980). Using tem-
plates based on the features proposed by Stevens and Blum-
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stein, a panel of human viewers was able to correctly label
place of articulation for 85% of voiced and voiceless stops
(Blumstein and Stevens, 1979). However, in other more re-~
cent studies, (Lahiri and Blumstein, 1981; Ohde and Ste-
vens, 1984) these views have been replaced by a description
of the acoustic correlates that is more dynamic in nature.
Kewley-Port (1983) has claimed that invariant cues to place
of articulation lie in the dynamic changes in spectral energy
over time observed in the first 50 ms beginning with the
release burst. Using templates based on her features, human
viewers were able to correctly identify place of articulation
for approximately 88% of initial voiced stops (Kewley-Port,
1983; Kewley-Port and Luce, 1984). In contrast, however,
Suomi (1985), using-automatic classification experiments
for initial stops, claimed that the cues for stops are heavily
dependent on the vowel context, thus making reliable stop
consonant recognition impossible unless the vowel is known.

Many workers in automatic speech recognition have at-
tempted to devise signal processing schemes for extracting
features for automatic identification of stops. Searle et al.
(1979) extracted features over a 100-ms interval from the
output of a psychophysically motivated filter bank and were
able to classify 77% of the six initial stops correctly from
these features. Tanaka (1981) used formant transitions (tra-
Jjectories of the first three formants and their relative ampli-
tudes) over the first 50 ms of the speech waveform and re-
ported automatic recognition rates of 819 for voiced stops
and 849% for voiceless stops. In studies completed over the
last 10 years, automatic classifiers for initial stops have gen-
erally been able to achieve about 90% speaker-independent
recognition for stops (Yoder and Jamieson, 1987; Rossen ef
al., 1988) and as high as 98% recognition for the speaker-
dependent case (Waibel et al., 1989). To date, none of the
speaker-independent automatic recognition schemes match
the performance of human listeners in identifying stops. La-
mel et al. (1987) found that listeners can identify about 97%
of initial stops correctly and 85% of mid and final stops
correctly, even with consonants extracted from continuous
speech, from a wide variety of talkers.

A. Objectives

The objectives of the present study were to extend the
results of the previously mentioned investigations in several
ways to develop in more detail a set of acoustic features that
encode sufficient information to distinguish the initial stop
consonants, The feature sets were investigated primarily
through automatic recognition experiments. We explored in
detail features based on overall spectral shape versus fea-
tures based on spectral peaks (formants). We compared fea-
tures based on one spectrum sampled at the release burst
(the static spectrum) versus features based on the temporal
history of several frames of spectra (dynamic spectra), We
also compared dynamic spectral features timed to begin with
the burst versus dynamic spectral features timed to begin
with the vowel transition after voicing onset. The use of
automatic classification experiments in this study allowed us
to fine tune the definition of the acoustic features for initial
stops using a large set of talkers and utterances over a wide
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range of conditions that produce variability in the acoustic-,
phonetic properties of speech. Additionally, in contrast to
most previous studies for which acoustic correlates were
only defined for place of articulation in initial stops, the fea-
tures defined in this study cue both place of articulation and
voicing.

Another main objective of this work, directed specifical-
ly to automatic recognition of initial stops, was to define a
small set of “‘informationally rich” features, well suited for
use in automatic classification. Part of the motivation for
this objective is the practical desire to be able to adequately
train an automatic classifier. That is, a basic principle of
pattern recognition theory is that the amount of data re-
quired to train a classifier increases exponentially with the
number of features (Duda and Hart, 1973). An even more
fundamental motivation is to be able to extract enough
acoustic-phonetic information to enable reasonably accurate
phoneme recognition without the extensive use of high-level
speech knowledge. Thus an additional goal of this work was
to identify features and signal processing techniques that can
improve the performance of phoneme-based automatic
speech recognition systems.

Intheremainder of this paper, we describe our database,
explain our feature extraction and automatic classification
algorithms, give experimental procedures and results, and
finally give a general discussion and conclusions based on
these experiments.

|. DATABASE
A. Tokens

Naturally produced CVC-isolated tokens were used in
all experiments of this study. Eighty-four CVC tokens were
recorded for each of 30 native English talkers. Ten of these
talkers were adult males, ten were adult females, and ten
were children between the ages of 7 and 11. The six initial
stops were /b/, /d/, /g/, /p/, /t/, and /k/. The vowel in
each syllable was one of the 11 vowels /a,i,u,2,3,1,e,0,u0,U,0/
and the final consonant was one of the 8 consonants
/b,d,g.k,t,p,v,s/. The final consonants were chosen to maxi-
mize the number of meaningful words and also because of
requirements of other experiments conducted with the same
data base. About 2/3 of the tokens were meaningful words
and about 1/3 were nonsense syllables. Each initial stop was
paired with at least one instance of each of the 11 vowels, i.e.,
each initial stop was spoken in 11 vowel contexts. The total
number of tokens (84) was greater than 66 (6 conson-
ants X 11 vowels) because of other experiments (not report-
ed in this paper) performed with the vowel and final stop
portions of the tokens.

B. Recording conditions and signal preprocessing

All recording sessions were held in a sound-attenuated
room. The typical sound leve!l of speech sounds was approxi-
mately 36 dB above the background noise level in the room.
An automated recording procedure was used for recording
each talker. An FElectro-Voice RE10 dynamic cardioid mi-
crophone was used in all recording sessions. A level-activat-
ed trigger with a 310-ms pretrigger buffer insured that the
entire signal was captured. The experimenter asked each
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. talker to repeat any syllable that the experimenter judged to
be mispronounced. Each speech waveform was low-pass fil-
tered at 7.5 kHz with a 6th-order Butterworth analog filter
before sampling at 16 kHz with a 12-bit A/D converter. All
speech files were digitally high-pass filtered at 240 Hz with a
62nd-order linear phase FIR filter to remove low-level, low-
frequency noise in the signal.

C. Segmentation

The acoustic regions of all speech files were manually
labeled using an interactive computer waveform editor. The
stimuli were segmented into a maximum of ten acoustic re-
gions. The acoustic regions pertinent to initial stops were
defined as follows.

(1) Prevoicing (PV), a portion of periodic or voiced
signal that occurs just before the consonantal release. This
acoustic segment occurs in about 10% of the /b/, /d/, and
/g/ syllables.

(2) Initial burst (IB), a portion of frication noise occur-
ring just after the consonantal release.

(3) Initial aspiration (IA), a portion of aspirative noise
that occurs after the initial burst. This aspirative segment
usually appears for unvoiced stops but very rarely for voiced
stops.

(4) Initial transition (IT), a periodic waveform that
begins at the first voicing pulse and ends at the start of the
steady-state vowel.

(5) Steady-state vowel (SV), a section of periodic
steady-state waveform.

The mean and standard deviation for the voice onset
time (VOT), the IT interval, and the SV interval are given in
Table I. The voice onset time (VOT') was defined as the time
from the onset of IB to the beginning of the first voicing pulse
(the beginning of IT). Note that the duration of IB was not
used in later experiments since it was often difficult to locate
the precise boundary between the burst and the aspiration
for the unvoiced stops. Also note that the defined starting
point for IT, the beginning of voicing onset for both voiced
and unvoiced stops, is not the same as that used in some data
reported in the literature. Our definition for IT was chosen
because the onset of voicing is reasonably clearly defined. All

TABLE I. Mean and standard deviation (s.d.) of the length (in ms) of
three acoustic segments for stop consonants spoken in syllable initial posi-
tion.

A. Voiced stops

/b/ /d/ /g/
Segment Mean s.d. Mean s.d. Mean s.d.
VOT 1.3 4.8 16.0 5.9 25.0 11.0
IT 31.2 114 34.0 12.3 38.8 16.8
SV 163.5 80.9 165.0 85.0 151.4 62.1

B. Unvoiced stops

/p/ /t/ /k/
Segment Mean s.d. Mean s.d. Mean s.d.
vYoT 78.4 29.7 87.5 30.1 - 956 27.6
IT 322 10.0 353 12.5 36.2 12.7
SV 126.5 64.4 150.0 71.8 157.6 79.2
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segmentation points were defined through visual and audi-
tory inspection of the relevant parts of the waveform. As an
additional aid, the spectral derivative (Furui, 1986a) was
also displayed along with each acoustic waveform to help
define the boundaries between the different acoustic seg-
ments. To minimize transients, all segmentation points were
chosen to coincide with zero crossings in the speech wave-
form.! After labeling the entire data base and excluding the
misrecorded or mispronounced files, the number of usable
stimuli for the six initial stop consonants was 2481 (out of
84 % 30 = 2520).

Il. SPEECH PARAMETERS AND CLASSIFICATION
METHODS

A. Speech parameters

In this section, we explain the signal processing tech-
niques used in computing the two features sets investigated
in this study. These two feature sets are formants and a form
of cepstral coefficients. Since the cepstral coefficients were
computed as a cosine transform of the nonlinearly scaled

* magnitude spectra, and were computed somewhat different-

ly than the usual method for computing cepstral coefficients,
we refer to them as discrete cosine transform coefficients
(DCTC’s). The formants encode the peaks in the spectrum
and are traditionally considered to be the primary acoustic
cues to phoneme identity. The DCTC’s encode the
smoothed overall shape of the spectrum. Thus these two pa-
rameter sets represent two different points of view regarding
the most important acoustic-phonetic features.

1. Formants

Formants were computed for the initial stops in a multi-
stage process as follows. The speech signal was first digitally
low-pass filtered at 3.8 kHz with a 49th-order FIR linear-
phase low-pass filter and resampled at 8 kHz. The speech
signal was then high-frequency pre-emphasized with trans-
fer function (1-0.75z~'). The signal was windowed with a
25-ms Hanning window and a 10th-order LP model was
computed. The roots of the LP polynomial were computed
in order to determine up to five formant candidates (fre-
quency, amplitude, and bandwidth) for each frame. For-
mant candidates were obtained for 25 frames (5-ms frame
spacing), beginning at the burst for the voiced stops and
were computed for 50 frames (5-ms frame spacing) for the
unvoiced stops. Finally, a formant tracking routine (similar
to McCandless, 1974), which makes use of the continuity
property and the bandwidth limitation of formants, was used
to track the formants from the last frame (i.e., a vowel re-
gion) back to the burst. The resulting formant values in the
initial region of each stimulus represent that stimulus. Be-
sides the formants (F1, F2, and F3), the log of the formant
amplitudes (A1, A2, and A3) and the formant bandwidths
(B1, B2, and B3) were also computed and used as param-
eters.

The performance of the formant tracking routine was
verified by comparison of the computed formant trajectories
for 400 stimuli with manually tracked formants for the same
stimuli. All trajectories obtained using the formant tracking
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routine for these 400 stimuli matched the manually obtained
trajectories. However, for both the manual and automatic
case it was not always possible to determine continuous for-
mant trajectories from the burst onset through the vowel.
Rather, at least for some of the stimuli, it appeared that one
set of spectral peaks began in the burst and eventually disap-
peared while another set appeared with the onset of the vow-
el transition. For many tokens, particularly labial and alveo-
lar stops, the formants are simply not well defined in the
burst and aspiration segments. Spectral zeros in the burst
spectra introduce additional problems with formant track-
ing based on an all-pole model. Formants also may change
rapidly during these segments. Thus the 25-ms analysis win-
dow, selected to provide good tracking during intervals of
slowly varying formants, may prevent good tracking in the
initial portions of the waveform. Despite these limitations,
the automatic routine appeared to track the formants as con-
tinuously as was possible with manual labeling of the for-
mants from LP spectral peaks.

2. Cepsiral coefficients

- The cepstral coefficients, i.e., the DCTC’s, were com-
puted over the original frequency range (0-8 kHz) as fol-
lows. First, the speech signal was high-frequency pre-em-
phasized with transfer function (1-0.95z ~').> The speech
signal was then windowed using a Hamming window. De-
pending on the length of the window, either a 256- or 512-
point FFT was computed for each speech frame. The magni-
tude spectrum of each speech frame was computed from the
complex-valued output of each FFT, Let H( /') denote the
magnitude spectrum of a speech frame, H'( f) anonlinearly
amplitude scaled version of H( /), H'( f') a nonlinearly
warped version of H'( f), and let [H'( f') ] be a portion of
H'(f") over a selected frequency range. The DCT coeffi-
cients are defined as the a, s in the equation

n=~nN

[H'(f)]="Y a,cos[(n—1)-mf]. (1)

n=1
Several pilot experiments were conducted to evaluate var-
ious nonlinear amplitude scales, nonlinear frequency scales,
and frequency ranges, in terms of their effect on automatic
classification accuracy of initial stop consonants. Based on
these experiments a log amplitude scaling was selected. Bi-
linear frequency warping (Oppenheim and Johnson, 1972)
with a coefficient of 0.5 was also selected for the primary

experiments. That is,
0.5sin (2 7f) ]

. 1 —1

f=r+ T fan {1 —0.5cos(2:7f)
The DCT coefficients were computed over a frequency
range of 200-6000 Hz. Thus the DCT coefficients are tradi-
tional cepstral coefficients except for added flexibility in fre-
quency range selection, frequency scaling, and amplitude
scaling. Note that a,, which we call DCTC], is a measure of
the average level of the spectrum; a,, which we call DCTC2,
is a measure of the spectral tilt, and so on. Also note that a
smoothed spectrum can be computed from the DCTC’s,
with the degree of smoothing dependent on the number of
DCTC’s used to reconstruct the spectrum.

(2)
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To illustrate the differences between LP smoothing of
spectra and DCTC smoothing of spectra, Fig. 1 depicts the
original FFT magnitude spectrum, a 14th-order LP model
spectrum, and the same spectrum computed from ten
DCTC’s. These spectra were computed from a 25.6-ms
speech frame sampled at the burst onset of the initial stop of
the word ‘‘dot” for a female talker. Because of the length of
the time window, this “burst” spectra is heavily influenced
by the following /a/. These spectra are plotted on a log am-
plitude scale, using a frequency scale with a bilinear warping
coefficient = 0.5, for a frequency range from 200 Hz-6 kHz.
Although both the LP and DCTC spectra are greatly
smoothed with respect to the FFT spectra, the LP spectrum
gives much more emphasis to the spectral peaks than does
the DCTC spectrum. In addition, since the DCTC smooth-
ing occurs after the frequency warping and the log amplitude
scaling, whereas the LP smoothing was performed on linear
amplitude and frequency scales and then simply displayed
on the log amplitude scale and warped frequency scale, the
smoothing is quite different for the two cases. The 14th-or-
der LP spectrum is compared with the 10th-order DCTC
spectrum, since the LP spectrum was originally computed
over the full-frequency range, DC to 8 kHz, versus the 200-
to 6000-Hz range used for the DCTC computations.

40 r | l T 11

30r FFT 7

dB 20 | -

10 .

FREQUENCY (kHz)

FIG. 1. The spectrum of the burst onset for /d/ in *dot” from a female
speaker computed with three methods: the FFT spectrum, a 10th-order
DCT spectrum, and a 14th-order LP spectrum.
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_ B. Features for dynamic spectra

Speech features were also computed for each of several
speech frames, in order to evaluate automatic recognition
accuracy for the case of dynamic spectra. Several methods
were first investigated for sampling the spectra and for com-
bining the parameters of several frames. These methods were
evaluated in terms of automatic stop consonant recognition
accuracy. The best approach found was to sample the speech
spectra with frames equally spaced starting at the burst. The
value of each parameter for each frame (i.e., a vector with a
length equal to the number of frames) was then expanded
using a cosine basis-vector expansion. That is,

N .

P(n) = Z C,.cos (k—1)mn

¥=h (L—1)
where P(n), 1<n<L, is the parameter value for frame n, L is
the total number of frames, V is the number of cosine coeffi-
cients used to encode P, and the C, are the cosine coeffi-
cients. Although several values for N were investigated, the
best results were usually obtained with N = 3.

Thus the coefficients C,, C,, and C; in Eq. (3) encode
the smoothed trajectory of a speech parameter. Here, C, is
the average value of a parameter, C, is a measure of the tilt
over time of a parameter, and C, provides additional detail

, (3)

of a parameter trajectory. These coefficients were the fea- .

tures for the automatic classifier. Thus, with this approach,
time-smoothed dynamic parameters are the classification
features. To illustrate the effect of this smoothing, Fig. 2
shows the original trajectories of two formants (F1 and F2)
after tracking and the same trajectories after each was
smoothed with a three-term cosine expansion. These trajec-
tories correspond to the first 120 ms of the word “dot” for a
female talker.

The choice of the cosine basis vectors for the time expan-
sion was motivated by pilot experiments comparing cosine
basis vectors, Legendre polynomial basis vectors, and least-
squares polynomial curve fitting. Unlike either of the poly-
nomial curve fitting methods, the cosine basis vectors re-
strict the smoothed curve to a slope of zero at both the
beginning and end of the interval, thus potentially prevent-
ing good matches to rapidly varying features at the start or

215
1.70 |- .
kHz
1.25 |- -
Fi

0.80 - ' = -

0_35 ] 1 1 I
0 30 60 20 120

DURATION (ms)
FIG. 2. Formant trajectories for F 1 and F 2 before and after smoothing with

a three-term cosine series expansion. These two trajectories are for the first
120 ms of the word “dot™ for a female talker.
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end of an interval. However, in the pilot tests, the cosine
basis vector features resulted in slightly higher recognition
rates (although not statistically significant) than the rates
obtained with either the Legendre polynomial basis vectors
or polynomial curve fitting,” and thus the cosine basis vector
expansion was selected for the primary experiments.

C. Classifiers

All feature sets for the stops were evaluated in terms of
their effects on automatic classification accuracy with a
Bayesian maximum likelihood classifier (BML). That is,
each stimulus was classified according to the category for
which the distance

D,(x) = (x—x;) "R '(x — x;) + In|R;| — 2 InP(G)),
‘ I<i<M, (4)

is minimized. In Eq. (4), x is the feature vector, x; is the
centroid for category G;, R, is the covariance matrix for cate-
gory G;, and P(G,) is the a priori probability for category G;.
Thus each category is characterized according to the cen-
troid of all the training data in that category and the covari-
ance matrix of the training data for that category. This clas-
sifier is optimum if the feature vector components are
multivariate Gaussian (Duda and Hart, 1973).

In all the automatic classification experiments reported
in this paper the speakers used for training the classifier were
different from those used for testing the classifier. More spe-
cifically, 15 speakers, 5 adult males, 5 adult females, and 5
children, were used to train the classifier and the other 15
speakers of our data base, 5 adult males, 5 adult females, and
5 children, were used for evaluation. Thus all comparisons of
features sets are derived from speaker-independent automat-
ic recognition experiments.

HI. EXPERIMENTS
A. Listening experiment

In addition to the automatic classification experiments,
we also conducted a listening experiment. The objectives of
this experiment were: (1) to evaluate our data base; (2) to
obtain an estimate of the interval of the speech signal re-
quired by human listeners to identify the initial stops; (3) to
use the identification rates obtained by human listeners as a
control for the results obtained by automatic classification
experiments; and (4) to determine the extent to which the
presence of the entire vowel signal helps listeners to identify
the initial stop.

1. Method

a. Stimulus specification. The experiment was conduct-
ed with the data from 9 of the 30 talkers—3 adult males, 3
adult females, and 3 children. These nine talkers were select-
ed as follows. An automatic classification experiment for the
6 initial stops was first conducted based on the data of each of
the 30 talkers. The results of this automatic classification
experiment were then used for ranking the ten adult males,
the ten adult females, and the ten children. For each of the
three groups, we chose the highest ranking, lowest ranking,
and middle ranking talker for use in the listening experi-
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ment. This method for selecting talkers was chosen to allow
a subsequent comparison of the talker rankings by automatic
classification versus talker rankings by listeners.

b. Subjects. Five female students at Old Dominion Uni-
versity served as subjects for the listening experiment. Sub-
jects were contacted through school bulletin board ads and
were paid for their participation. Subjects were phonetically
naive and had no known history of a hearing or speech disor-
der at the time of the experiment.

c. Procedure. The first step in our procedure was to in-
sure that all stimuli of the nine talkers had approximately
equal amplitude when presented to the subject. To do this,
each stimulus was normalized so that each complete CVC
syllable had the same maximum short-time absolute value.

That is, the average absolute value was computed for each-

25-ms segment of each token. Each token was then scaled so
that the maximum of the average absolute values for each
token would be the same.* The stimuli of each talker were
then randomly ordered and were automatically presented to
each subject individually in a sound-treated room through
headphones (Koss-Pro/4 X PLUS). For each listening con-
dition the nine talkers were also presented to the subject in
random order, but grouped together in blocks of adult males,
adult females, and children. Each subject attended an initial
1/2-h training session in which the experimental procedure
was explained and 40 CVC syllables from a female talker
outside the testing set were presented. In this training session
the subject entered computer-keyboard responses for the ini-
tial consonant, the vowel, and the final consonant. The sub-
ject was informed, during this training session, of incorrect
responses and was allowed to listen again to that stimulus.
After this training session, the subjects were presented with
stimuli for the first listening condition. No feedback was giv-
_en after the initial training session, The listeners could listen
to each stimulus as many times as they desired but had to
make a forced choice response among one of the six stops.
This experiment was performed for six initial stop-segment
conditions, summarized as follows: (1) the entire CVC syl-
lable (CVC); (2) the beginning of the burst up to the end of
the following vowel (IB-SV); (3) the beginning of the burst
up to the end of the transition to the following vowel (IB-
IT); (4) a 50-ms segment beginning at the burst onset (IB-
50); (5) a 100-ms segment beginning at the burst onset (IB-
100); and (6) the beginning of the initial transition up to the
end of the following vowel (IT-SV) (for /b,d,g/ only).
Each subject completed these six conditions in approxi-
mately five 1-h sessions over a 2-week period. All subject
responses were scored using an automatic scoring program.

2. Results

Table II gives the average percent identification, aver-
aged over five listeners and nine talkers, for the six initial
stop consonants for each of the six listening conditions. As
Table 11 shows, the average percent correct for the six initial
stops, based on listening to the entire syllable was 98.2%,
thus showing that nearly all the stop tokens were identifiable
by all the listeners. Comparison of conditions 2 and 3 of
Table 1l indicates that there is approximately a 2% percent
improvement in the identification rate of initial stops based
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TABLE I1. Summary of listening results for identification of initial stops for
a variety of conditions. All results were obtained by averaging over five lis- ’
teners and nine talkers. All results are for six stops, except for condition IT-
SV, which was for the three voiced stops only.

No. Condition % identification
1 CvC 98.2
2 IB-SV 97.6
3 IB-IT 95.7
4 1B-50 89.9
5 IB-100 96.6
6 IT-SV (for the three 74.5

voiced stops only)
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on the burst through the end of the steady-state vowel versus
the burst through the end of the initial transition. Inspection
of the confusion matrices (Tables III and IV) for these two
conditions indicates that almost all the improvement in con-
dition 2 over condition 3 was due to improvements in the
identification of voiced stops. This change in error pattern
seems reasonable since the interval consisting of the burst
plus initial transition is generally much shorter for voiced
stops than for unvoiced stops. Conditions 4 and 5 of Table II
(confusion matrices given in Tables V and VI) show that
listeners were able to identify stops with about 90% and
97% accuracy, respectively, from 50 and 100 ms of the
speech waveform timed to begin with the burst. Again, the
recognition rate improved much more for the voiced stops
than for the unvoiced stops—the voiced stop results changed
by 9.7% vs 3.5% for the unvoiced stops. For all four confu-
sion matrices given, the identification rates for the unvoiced
stops are somewhat higher than for the voiced stops. There is
also, except for /g/-/k/ pair and the 100-ms interval, a
greater tendency to confuse voiced stops with unvoiced stops
with the same place of articulation than vice versa.
Condition 6, based only on the voiced stops, shows that
the identification rate of initial stops decreases significantly
if the burst section is removed (96.8% for voiced stops for
the IB-SV interval versus 74.5% for the IT-SV interval). A
two-tailed ¢ test indicated that a difference of 1.2% was sig-
nificant at the 95% confidence level. This large difference in
identification rates thus suggests that the burst section is
essential for identifying initial stops, even for voiced stops.
The results of these experiments are in general agree-
ment with other similar experiments reported in the litera-
ture. For example, the 97% rate for condition 5 is very simi-
lar to the rate obtained by Lamel ef al. (1987) with stop
stimuli extracted from continuous speech. The general result

TABLE IL Confusion matrix resulting (rom listening experiment for iden-
tification of six initial stops based on the IB-SV interval.”

/b/ /d/ /8/ /p/ Vs /k/
/b/ 96.3 0.5 0.6 2.4 0.2 0.0
/d/ 0.9 95.1 3.4 0.0 0.6 0.0

e/ 0.0 0.9 99.0 0.0 0.0 0.2
/n/ 0.0 0.0 0.0 99.7 0.0 0.3
/N 0.0 0.0 0.0 0.0 97.0 - 3.0
/k/ 0.0 0.0 0.0 0.9 0.4 98.7
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TABLEIV. Confusion matrix resulting from listening experiment for iden-
" tification of six initial stops based on the IB-IT interval.

/b/ /d/ /e /p/ s /k/

/b/ 93.7 0.3 1.3 4.7 0.0 0.0
/d/ 2.2 89.2 4.1 0.0 4.1 0.4
V4-74 0.3 0.5 96.0 0.0 0.0 3.1
/v/ 0.5 0.0 0.0 99.4 0.2 0.0
/t/ 0.0 0.0 0.0 0.0 97.1 2.9
/k/ 0.0 0.0 0.1 0.7 0.4 98.7

that listeners can accurately identify initial stops from a
short interval timed to begin at the start of the burst also
agrees with the results of several studies (for example, Te-
kieli and Cullinan, 1979; Kewley-Port er al., 1983), al-
though the details of the exact length of time required do not
agree. Additional discussion of the results of this experi-
ment, and comparison to the automatic classification re-
sults, is deferred until the results of the automatic classifica-
tion experiments are presented.

B. Classification experiments based on static burst
spectra

The objective of the first series of automatic classifica-
tion experiments was to optimize features for identification
of initial stop consonants based on the burst spectrum com-
puted from one 25.6-ms speech frame sampled at the burst
onset of each stimulus. This speech frame was sampled from
the stimulus using a half-Hamming window. A 25.6-ms half-
Hamming window is rectangular over the first 12.8 ms and
the “second half” of a 25.6-ms Hamming window for the last
12.8 ms. This window was timed to begin with the burst
onset. A pilot experiment indicated that slightly higher
(about 1%) automatic classification rates were obtained
with a half~-Hamming window versus the full Hamming win-
dow. This is also the same window used for this application
in previous work (Blumstein and Stevens, 1979). Our objec-
tives were to determine to what extent the burst spectrum
carries information for initial stops, for both place of articu-
lation and voicing features, and to contrast the success of
formants versus DCTC’s in representing this information.

For the case of DCT coefficients several experiments
were conducted to optimize the signal processing involved in
the spectral shape representation prior to comparison of the
DCTC representation of the burst spectrum with the for-

TABLEYV. Confusion matrix resulting from listening experiment for identi-
fication of six initial stops based on a 50-ms interval timed to begin with the
burst.

/b/ /d/ e/ /p/ V474 ’k/

/b/ 90.2 0.0 2.6 7.3 0.0 0.0
/d/ 1.9 84.1 6.9 0.0 7.1 0.0
/g/ 0.2 0.5 84.8 1.2 0.2 13.1
/p/ 3.2 0.3 0.3 95.0 0.2 1.1
// 0.0 0.6 L1 0.9 95.5 2.0
/k/ 0.0 0.0 5.5 2.4 2.0 90.1
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TABLE V1. Confusion matrix resulting from listening experiment for iden-
tification of six initial stops based on a 100-ms interval timed to begin with
the burst.

/b/ /d/ Vi-% /v/ /t/ /k/

/b/ 97.3 0.2 0.8 1.8 0.0 0.0
/d/ L5 93.3 3.9 0.0 0.9 0.2
g/ 0.5 0.9 97.6 0.0 0.0 1.0
v/ 1.1 0.0 0.0 98.0 0.0 0.9
/t/ 0.0 03 0.3 0.2 97.4 L7
/k/ 0.0 0.1 33 1.0 0.0 95.5

mant representation. Variables investigated included the
frame length, several forms of nonlinear amplitude and fre-
quency scales, frequency range, and the number of DCT co-
efficients required. Since most of these effects were small, we
only give a brief summary of the results, except for the exper-
iment to investigate the required number of DCT coeffi-
cients. In particular, the best frame size was found to be 25.6
ms (vs 20 and 30 ms), the best amplitude scaling was log
(versus linear or power function), the best frequency warp-
ing was bilinear with a coefficient of 0.5 (versus other coeffi-
cients for bilinear scaling and mel and sine warping), and the
best frequency range was 200-6000 Hz (versus other ranges
selected from 0-8000 Hz). In all cases “best” was defined as
highest automatic recognition results for 6 stops with data
from the 15 test speakers, over the conditions investigated.

The most important optimization experiment was the
one conducted to determine the number of DCT coeflicients
that should be used to represent each spectrum for classifica-
tion. This test was performed using the parameter values
listed above for frame length, frequency range, etc. Sixteen
DCT coeflicients were computed from the spectrum of one
frame sampled at the burst onset of each stimulus in the
database. Classification rates were obtained as a function of
the number of DCTC’s. Figure 3 depicts the results. Note
that as the value on the abscissa increases, the level of spec-
tral detail available to the classifier increases. Figure 3 shows
that the recognition rate for test data improves very little if
DCTC’s are added after DCTC7. The test rate even de-
creases slightly if DCTC’s with indices higher than 10 are
used. Note that DCTC1, corresponding roughly to overall
signal level, was not used for the results plotted in Fig. 3
because its use decreased the test recognition rate. Therefore
these results imply that the burst spectrum can be encoded as
a relatively smooth spectrum for use in automatic classifica-
tion of stops.

Thus DCT coefficients 2-10, computed as outlined
above, are an encoding of the smoothed spectral shape of the
burst spectrum. The first three formants and their log ampli-
tudes were also computed for the burst spectrum. Automatic
classification experiments were then conducted for three pa-
rameter sets (DCTC’s; formants; formants plus amplitudes)
for each of three conditions: (1) voiced stops only (3V); (2)
unvoiced stops only (3U); and (3) all six stops (6S). For
conditions 1 and 2 place of articulation must be determined
whereas for all six stops, both the place and voicing features
must be distinguished. Figure 4 summarizes the training and
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FIG. 3. Automatic classification rates for the six initial stops as a function of
the number of DCT coefficients for one static spectrum.

test results for these conditions and these parameter sets, all
based on the BML classifier. )

The results given in Fig. 4 indicate that global spectral
shape features are much better for identifying the stops than
are the values of formants in the burst interval. As expected,
none of the features are sufficient to distinguish all six stops
reliably, with the highest test recognition rate of only 64%
for this condition. Considering the cases of voiced stops or
unvoiced stops separately, place of articulation can be identi-
- fied with over 829% accuracy based on spectral shape versus
approximately 50% based on the formant values or 73%
based on formants and their amplitudes. For all conditions,
spectral shape is much more effective for classifying the
stops than formants alone. The improvement in recognition
accuracy in adding the formant amplitudes to the formant
frequencies, which thus adds information about global spec-
tral shape, also lends support to the hypothesis that the
shape of the spectrum carries the most information. Note,
however, that the addition of bandwidths to the form-
ant + amplitude parameter set did not improve the recogni-
tion rate. In any case, even the 82% and 84% rates obtained
for voiced and unvoiced consonants, respectively, are far less
than the rates possible by human listeners, leading to the

100

PERCENT RECOGNITION
o
=]

40§
20 o -
3v 3U 68 3V 3U 6S 3V 3U 6S
DCTC's F's F's + A's
Training B Testing

FIG. 4. Summary of automatic recognition results from one static spectrum *

for voiced stops (3V), unvoiced stops (3U), and all six stops (6S) for each
of three parameter sets.
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conclusion that although the spectral shape of the burst on-
set carries information about place of articulation, this infor-
mation is incomplete, at least insofar as automatic classifica-
tion of stops is concerned. Although a perceptual
experiment was not conducted specifically for speech stimuli
consisting of a 25.6-ms frame, the perceptual results ob-
tained from the 50-ms and 100-ms segments (conditions 4
and 5 from Table II) imply that the burst spectrum is also
unlikely to contain complete information for perception.
To gain more insight into the role of spectral shape in
cueing place of articulation, plots were made of the average
spectra at burst onset for each of the six stop categories, as
obtained from a DCTC 1-10 representation. These plots are
shown in Fig. 5. These plots are averages of all tokens of each
stimulus in our data base (i.e., approximately 400 tokens for
each case). Because of this averaging over 30 speakers and
11 vowel contexts, these spectra are much more smoothed
than would be a typical spectral plot computed from a single
token. Also note that the amplitude scale is logarithmic and
the frequency scale is for bilinear frequency warping. These
average spectra vary considerably as place of articulation
changes, but are very similar for the same place of articula-
tion (i.e., /b,p/ form a pair, /d,t/ form a pair, and /g,k/
form a pair). Thus these plots are consistent with our classi-
fication results that suggest place of articulation can be dis-
tinguished reasonably well from the burst spectra, but the
voicing feature cannot be distinguished from the burst spec-
tra.
C. Classification experiments based on dynamic
spectra

The experiments reported in the previous section indi-
cated that global spectral shape shows promise for cueing
stop consonant identity, but that the global spectral shape
derived from a single frame is insufficient. Thus several ex-
periments were conducted- to identify features from several
frames of speech data beginning at the burst onset. The ob-

50 T T T TV L T T L

40 o
30
dB
20

TN N TN TN G T T N |

YT T
IS S T T T VU R

LI N R B S S S |

10

oLt L S SO S

50 — T T T LI N T T L T T T 11
40
30

ds
20

T T T T T 7T 77

T T 0L SO0 B U S
T T T
TS TS SO O S S WY WO

10

ol ' TR S T B |

80 v T T T T T FT T T T T LI |
40
30
dB
20

10

T T T T T
S TS T T S S W
T T T T T

ST TN T T T N

ol ' L L I : 1 ) 1 1
2 5 1 2 3 6 2 5 1 2 3

FREQUENCY (kHz)

@

FREQUENCY (kHz}

FIG. 5. The average spectra at burst onset for each of the six initial stops as
obtained from a DCTC 110 representation, averaged over 11 vowel con-
texts and 30 speakers.

2985



100 - -

90 |-
80 -
70
60 -
50 - g

40 -
1 | I | { 1 I { 1 1

i 12 13 14 1-5 16 1-7 1-8 1-9 1-10

Testing  Training _|

PERCENT RECOGNITION

INDICES OF DCT COEFFICIENTS

FIG. 6. Automatic classification accuracy for the six initial stops as a func-
tion of the number of DCT coefficients for dynamic spectra spanning the
first 60 ms of each stimulus.

jective of the first experiment was to examine once again the
effects of the level of spectral detail on classification accura-
cy for the six stops, for the case of a dynamic spectral shape
representation. To investigate this issue, 10 DCT coefficients
were computed for each of 11 frames spanning the first 60 ms
of each stimulus, with a frame size of 15 ms and frame spac-
ing of 5 ms. Each of these 10 DCT coeflicients was then
expanded with a 3-term cosine expansion over those 11
frames. The three coefficients of the cosine expansion of each
DCT coefficient were used as the feature vector for the clas-
sifier to represent that DCT coeflicient. The automatic clas-
sification accuracy was evaluated for the six stops as a func-
tion of the number of DCT coefficients used as input for the
classifier. Figure 6 shows the results. The recognition rate
increases until DCTC7 is added, but then levels off, or even
decreases slightly. These results imply that the first seven
DCT coefficients are sufficient for representing the spec-
trum of each speech frame. The implication is that the highly

o---0 Training

smoothed global shape of the spectrum encodes most of the
information required for stop identification. For the case of
dynamic spectral shape, the time trajectory of DCTCI, rep-
resentative of signal level, does improve the recognition rate
by about 1.3%. The discrepancy between the effect of
DCTCI for the static and dynamic features implies that the
temporal changes in DCTCI, not its average level, contain
the stop information. Thus the results depicted in Fig. 6,
which are similar to those given in Fig. 3 for the static spec-
trum, imply that DCT coefficients 1-7 are sufficient for en-
coding each frame of the time-varying spectrum- for use in
automatic classification of initial stops.

Additional testing investigated the effects of window
length and frame spacing on recognition accuracy. Neither
window length nor frame spacing were found to affect this
accuracy significantly. However, of the values tested (frame
spacings of 2.5, 5, and 10 ms; window lengths of 10, 15, and
20 ms) a frame spacing of 5 ms and a frame length of 15 ms
gave the best results (by about 1% over the worst case) and
were thus used in later experiments.

Another series of automatic classification experiments
was conducted to determine the approximate interval, mea-
sured from the beginning of the burst of each stimulus, over
which the dynamic features should be extracted to classify
initial stops. In these tests, dynamic features were extracted
from 20-, 30-, 40-, 50-, 60-, 75-, and 90-ms intervals and
classification results were computed for each of these inter-
vals. Each classification test was performed for the three
voiced stops, for the three unvoiced stops, and for the six
stops combined. The series was repeated for DCTC’s and for
formants plus amplitudes.” In all cases and for each time
interval, the parameters were encoded with a three-term co-
sine basis vector expansion over time. Figure 7 depicts the
results of these tests.

" Figure 7 shows that test results for both the DCTC’s and

B—ia Testing
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formants plus amplitudes increase as the interval used for
feature extraction increases. However, the results are consis-
tently lower for the formant trajectories versus the DCTC
trajectories. The recognition rates increase for time intervals
up to 60 ms, for the case of the six stops and the three voiced
stops. However, for unvoiced stops test results increase only
until the interval reaches a length of 40 ms. Although the
differences in the recognition rates at these two intervals for
the voiced and unvoiced stops were not significant at the
99% confidence level, the indication that voiced stops re-
quire a longer time interval for reliable automatic identifica-
tion than do the unvoiced stops is consistent with other
sources of evidence. For example, the listeners required a
longer portion of the signal to identify voiced stops than
unvoiced stops. The listeners identified initial voiced stops
with 86.4% accuracy from the first 50 ms of each stimulus
and with 96.1% accuracy from the first 100 ms. In contrast,
the listeners could identify 93.5% of the unvoiced stops cor-
rectly from a 50-ms interval and 97.0% of the unvoiced stops
from a 100-ms interval. These results imply that cues for the
unvoiced stops are contained in a shorier time interval than
for the voiced stops. These results are also in agreement with
perceptual results reported by other investigators. For ex-
ample, Tekieli and Cullinan (1979) reported that the aver-
age signal interval required by listeners to identify initial
voiced stops is 34 ms versus 17 ms for unvoiced stops.®

Figure 8, in bar graph form, summarizes the automatic
classification results obtained with DCTC trajectories, for-
mant trajectories, and formant plus amplitude trajectories,
for the 60-ms interval beginning with the burst onset. The
figure shows that for each condition, the highest recognition
rates correspond to DCTC’s, followed by formants + ampli-
tudes, followed by formants alone.

Additional tests investigated the role of the initial tran-
sition interval, without the burst, in supplying cues for initial
stops. Therefore all the classification tests used for the re-
sults shown in Fig. 8 were repeated with identical signal pro-
cessing, except that the features were timed to begin with the
onset of voicing in the initial transition rather than the burst
onset. The results of this experiment are given in bar graph
formin Fig. 9. Comparing the results given in Fig. 9 with the
results given in Fig. 8, for every condition and for each fea-

PERCENT RECOGNITION

F's + A's

Training Testing

FIG. 8. Summary of automatic recognition results obtained from dynamic
spectra, timed to begin with the onset of the burst.

2987 J. Acoust. Soc. Am., Vol. 89, No. 6, June 1991

Z. B. Nossair and S. A. Zahorian: Dynamic spectral shape features

100

L

—

-

-

N

-

PERCENT RECOGNITION
)
=]

7]
a0 %é ;/// , %
ool %é N A il

3V 3U 6S 3v 3U 6Ss 3V 3U 6S
DCTC's F's F's+A's
Training E& Testing

FIG. 9. Summary of automatic recognition results obtained from dynamic
spectra, timed to begin with the beginning of the vowel transition.

ture set, the identification of initial stops significantly de-
creases when the features are extracted from a signal timed
to begin at the start of the initial transition rather than at the
start of the burst. For example, the recognition rate of the six
stops using DCT coefficients extracted from a signal starting
at the first voicing pulse is 55.3% compared to 93.7% if the

“burst is included. Even for the case of the three voiced stops,

and with DCT coefficients as the parameter set, the recogni-
tion rate drops to 81% if the burst is not included versus
95% if the burst is included. These results show that the
vowel transition regions alone do not contain sufficient
acoustic cues to identify initial stops reliably. These results
are also in agreement with the perceptual results obtained
from our listening experiment. The listeners reported 74.5%
identification for initial voiced stops for stimuli that started
from the first voicing pulse and ended with the end of the
vowel. Therefore, these results imply that the burst section is
essential for reliable identification of initial stops. Another
point to be noted from Fig. 9 is that identification of un-
voiced stops based on the vowel transition is only slightly
above chance (46% vs 33% for chance), indicating that the
vocalic transitions, at least those occurring after the onset of
voicing, carry almost no information regarding the identity
of unvoiced stops.

In summaty, the best automatic classification results of
initial stops are obtained from the smoothed spectral shape
features (DCT coefficient trajectories) extracted from an
interval approximately 60 ms in duration and beginning
with the burst onset. As Fig. 8 shows, the recognition results
based on formants are very low compared with results ob-
tained from DCT coefficients for every condition tested. Al-
though the feature set consisting of formants plus ampli-
tudes is much more effective than formants alone, the
DCTC’s are much better still. Thus the experiments of this
section suggest that changes in the global shape of the spec-
trum over a 60-ms interval beginning at the burst are very
effective for cueing both the place of articulation and the
voicing feature in initial stop consonants.

Figure 10 depicts smoothed spectra over a time-frequen-
cy plane for each of the six stop consonants. The plots shown
were obtained by first smoothing the spectra with DCTC’s
one through seven in frequency and then smoothing each of
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FIG. 10. Smoothed spectra over a time-frequency plane for the six initial
stops.

these DCTC’s with a three-term cosine expansion over time.
Additional smoothing occurs, as for the burst spectra depict-
ed in Fig. §, because of averaging over all 30 speakers and all
11 vowel contexts. The plots span a frequency range of 200~
6000 Hz and a time interval of 0-60 ms beginning with the
burst onset. Inspection of these plots reveals systematic dif-
ferences among the six stop categories. The voiced conson-
ants are clearly differentiated from the unvoiced consonants
in that the low-frequency energy for the voiced stops in-
creases with time whereas the low-frequency energy for the
unvoiced stops remains constant or decreases. In fact, we
found that the addition of VOT as an extra feature parameter
did not improve classification accuracy. The bilabials are
characterized by a smooth surface in the time-frequency
plane with a negative spectral tilt, particularly for the low-
time frames. The alveolars are characterized by a nearly flat
onset spectra and decreasing high-frequency energy as time
increases. The velars are characterized by three broad spec-
tral peaks, with the midfrequency one the most prominent.
Note that these spectral features are consistent with the dy-

higher than the perceptual rate for the 50-ms condition
(89.9%) and lower than the perceptual rate for the 100-ms
condition (96.6%). These automatic classification results
were obtained using a 20-dimensional feature vector, corre-
sponding to the coefficients of a 3-term cosine expansion
over time for DCTC’s one through six plus the coefficients of
a 2-term cosine expansion for DCTC7.” Presumably the
automatic classification rates did not improve in our experi-
ments for time intervals greater than 60 ms since the amount
of training data was insufficient to determine reliable statisti-
cal estimates for the feature spaces required to encode these
longer intervals.

We performed a ¢ test for the recognition results ob-
tained for the six initial stops using the data of the 15 talkers
used for testing. This test indicated that the 95% confidence
interval for our recognition accuracy resultsis + — 2.1%.
This test was conducted only for the case of dynamic spectral
shape features extracted from the first 60 ms of each stimu-
lus. However, similar results would be expected for other
cases. The results of this ¢ test imply that if our experiments
were repeated with other test talkers, the recognition results
would generally be within 2.1% of the results obtained using
the 15 test talkers used in our study. Therefore test classifica-
tion accuracy differences of 3% or more are statistically sig-
nificant.

In an attempt to derive a lower dimensionality feature
space, we also used linear discriminant analysis to reduce
our 20 features to five maximally discriminating features.
The automatic classification rate based on two discriminant
scores was 71.6%, and the rate based on five discriminant
scores was 86%. Thus these low dimensionality spaces are
not sufficient for reliable identification of initial stops. We
also examined the relative importance of the 20 features
through a feature ranking algorithm similar to the one de-
scribed by Cheung (1978). Table VII lists the ten features
ranked highest by this feature ranking program, in terms of
their contribution to recognition rate on test data [refer to
Eq. (3) for notation]. The table shows that the three most
discriminating features for the 60-ms interval are the average
value of DCTC2 (the spectral tilt), the temporal slope of
DCTC3 (a measure of changes in spectral compactness),
and the temporal slope of the spectral tilt (DCTC2). Eight

TABLE VIL Ten highest ranking features selected by a feature ranking
algorithm as contributing the most to automatic stop identification for test
talkers. These 10 features were selected from 20 dynamic spectral shape
features. The test recognition rate based on all 20 features was 93.7%.

namic features described by Kewley-Port (1983). Index % testing % increase Fealures
1 43.1 43.1 C, of DCTC2
IV. DISCUSSION 2 574 14.3 C, of DCTC3
Our experiments show that the dynamic spectral shape 3 67.9 105 ? ‘”: DC‘TC\%
features (DCT coefficient trajectories) extracted from the 4 753 7.6 C Ul,DCTLj
first 60 ms beginning with the burst are very effective for > 792 7 €. orbecd
St DY S Deginiing w ourst are very : 6 $2.8 3.6 C, of DCTC4
encoding consonantal information. Using these dynamic 7 85.5 2.7 C of DCTC3
spectral shape features we were able to identify initial stops 8 86.7 12 C, of DCTCO
nearly as accurately with an automatic classifier as could 9 88.2 1.3 C, of DCTCI
human listeners. The automatic classification rate of 93.7% 10 89.9 1.7 C, of DCTCS
derived from these dynamic spectral shape features was -
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out of the 10 top-ranked features, from which 89.9% identi-
fication of test data was obtained, consist of the first and
second time cosine basis vector coefficients used to encode
the spectral trajectories of the first five DCTC’s.

All of our experiments suggest that dynamic spectral
shape contains sufficient cues for reliable automatic classifi-
cation of initial stops. Since we did not perform a perceptual
test with synthetic stimuli, with conflicting cues indicated by
dynamic spectral shape versus those supplied with alterna-
tive features (such as formants), we did not directly test the
perceptual significance of dynamic spectral shape. Compari-
sons of stimuli locations in our 20-dimensional feature space
with stimuli locations in a 2-dimensional perceptual space
obtained from multidimensional scaling of the listening ex-
periment data were also not feasible because of the great
disparities in the dimensionality of the two spaces. However,
automatic classification results based on dynamic spectral
shape features and the BML classifier are generally consis-
tent with perceptual results. For éxample, as mentioned pre-
viously, the identification rates for both human listeners and
our automatic classifier are much better if the burst plus
vocalic transition is used versus the vocalic transition only.
The identification rates for both listeners and the automatic
classifier increase as the signal interval increases, up to a
certain point. Both automatic and perceptual identification
also require longer portions of the speech signal for voiced
stops versus unvoiced stops.

To further test the hypothesis that automatic classifica-
tion based on spectral shape trajectories closely parallels hu-
man perception of initial stops, we compared the perceptual
rankings of the nine talkers used in the listening experiment
with the automatic ranking for the same nine talkers. The
perceptual rate was obtained by averaging the identification
rate of all listeners for each talker for the condition in which
listeners were presented with the first 50 ms of each stimulus.
The automatic rate was obtained by training the classifier
using 29 speakers and testing the classifier with data of the
speaker in question. Table VIII gives the automatic identifi-
cation rate and the perceptual identification rate for each of
the nine speakers. The table shows that the ranking based on
automatic classification matches the ranking from the listen-

TABLE VIII. Automatic recognition rates versus the perceptual identifica-
tion rates for the nine talkers used in the listening experiment. The automat-
ic recognition rates were obtained using the coefficients of a three-term co-
sine expansion over time for each of DCTC’s one through seven. DCTC's
were extracted from the first 60 ms of each stimulus. The perceptual identi-
fication rates listed are for the IT-50 (50-ms) condition. The first three
talkers listed are adult females, the second group of three are adult males,
and the final three are children.

Talker L.D. Perceptual rate Automatic rate
Fo4 93.5 96.4
FO2 93.0 92.6
F09 90.4 90.3
MO6 90.9 95.1
M10 89.7 90.4
MO5 83.8 88.1
Co4 96.2 93.8
Cco2 89.7 78.2
Cl10 82.2 87.0
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ers for the female and male speakers. For the children, the
automatic rankings and perceptual rankings do not match
for two of the three speakers. This mismatch for the case of
children might be because of greater variability in speech
productions for children relative to that of adults.

V. CONCLUSIONS

In this study, several aspects of acoustic cues for initial
stop consonants were investigated. We compared global
spectral shape features (DCTC’s) versus formants, as
acoustic cues for initial stops. We also compared static ver-
sus dynamic features and investigated the role of initial tran-
sitions as cues for initial stops. Our experiments indicate that
the six initial stops can be automatically classified, indepen-
dently of both vowel context and talker, with over 93% ac-
curacy based on dynamic spectral shape features spanning a
signal interval of approximately 60 ms beginning with the
release of the burst. In contrast, features extracted from the
initial transitions beginning at the onset of voicing, leaving
off the burst, cannot reliably distinguish initial stops. The
static spectral shape at the burst onset is sufficient to distin-
guish place of articulation with approximately 82% accura-

" cy. Formant trajectories can be used to distinguish place of

articulation for only about 73% of initial voiced stops and
56% of initial unvoiced stops. The relatively poor perfor-
mance of formants is not surprising given all the difficulties
with formant tracking in the burst and aspiration regions of
the stop waveforms. However, even for the case of voiced
stops with the burst removed, where the reliability of the
formant tracking is presumably highest, the DCTC classifi-
cation results are superior to the formant results by a wide
margin (82% vs 69%). The primary conclusion from our
experimental work is that the dynamic properties of spectral
shape convey a great deal of information about both place of
articulation and the voicing features for initial stop conson-
ants. Although considerable additional effort could be de-
voted to more sophisticated formant tracking algorithms for
use with stop waveforms, our classification results with dy-
namic global spectral shape imply that formants are not real-
ly required.

From our point of view acoustic correlates for initial
stops can be viewed as either context independent or depen-
dent, depending on terminology. The cues are context de-
pendent in the sense that consonant cues are coarticulated
with the vowel, even in the burst section of the waveform.?
Therefore, low-dimensionality feature spaces are inadequate
to represent these cues, if the vowel context is allowed to
change. On the other hand, the cues are context independent
in that there is no need to explicitly identify the vowel to
recognize the consonant. That is, the consonants can be clas-
sified from high-dimensionality feature spaces that encode
sufficient consonant and vowel information in an integrated
fashion to allow consonant identification. We also found no
evidence to indicate that the identification of onset of voic-
ing, or determination of voice onset time, improves the auto-
matic classification of stops. As noted previously, the addi-
tion of VOT to dynamic spectral shape features did not
improve automatic classification of stops. The burst onset
appears to be the critical timing point in the signal. Features
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extracted from the smoothed spectral shape over a fixed sig-
nal interval beginning with the burst are sufficient to enable
reliable identification of the initial stops for an automatic
classifier. Human listeners are also able to identify initial
stops reliably from a short segment of the signal timed to
begin with the burst.

We can at present make no claim that the particular
dynamic global shape features used in our automatic classifi-
cation experiments are the same or even closely parallel fea-
tures used in perception. However, at least roughly speak-
ing, the automatic classification results obtained from the
dynamic spectral shape features are similar to perception
results. The results of our study therefore support the conjec-
ture that the features used for perception are derived from
dynamic and highly smoothed spectral shape, as noted in
previous studies (Kewley-Port, 1983). Such features might
be more readily identifiable if the front-end spectral process-
ing more closely approximated that performed by the hu-
man auditory system.
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! Although segmentation at zero crossings does not eliminate the possibility
of spurious sound generation, no additional signal processing, such as ta-
pered endpoints, was used for the segments.

2The careful reader will notice that the high-frequency preemphasis is dif-
ferent for the formant processing versus the DCTC processing. The pre-
emphasis values used were selected from values used in the literature for
other similar experiments (Lee, 1989; Talkin, 1987), and also from our
own pilot experiments for the two types of processing. The basic reason for
the difference in the pre-emphasis coefficient for the two cases is the differ-
ence in the sampling rates (8 vs 16 kHz). Therefore, a larger value of the
pre-emphasis coefficient is required for the DCTC case in order that the
effective analog pre-emphasis roughly match over the more important
low-frequency range.

3 In most experiments, the recognition results obtained with Legendre poly-
nomials were identical to those obtained with least-squares polynomial
curve fitting. The polynomial methods were equivalent to those described
by Furui (1981, 1986b) for computing delta cepstrum coefficients for
automatic speech recognition.

* Although amplitude equalization is not, of course, equivalent to loudness
equalization, this gain normalization did prevent dramatic changes in
loudness among the stimuli. In any case, subjects were not required to
evaluate loudness—the amplitude normalization was performed because
some of the speakers (primarily the children) varied considerably in loud-
ness from token to token.

Tests were also made with formants plus amplitudes plus bandwidths.
However, since the classification results were no better than for formants
plus amplitudes, the results of these experiments are not given.

¢ From our experiments, we could only speculate concerning the apparent
discrepancy in signal interval required for voiced stop versus unvoiced
stop identification. One conjecture was that voiced stops are more vowel
dependent, even in the burst, than are unvoiced stops, and thus require a
longer interval to include sufficient cues for stop identification. However,
our experimental evidence did not support this hypothesis. In an automat-
ic vowel identification experiment based on the burst (using a 25-ms Ham-
ming window centered at the burst onset) 26.8% of vowels could be identi-
fied for the case of voiced stops versus 28.2% for the case of unvoiced stops
(versus 9.1% for chance for 11 vowels).

7The third term of the cosine expansion for DCTC7 was not used because
classification results degrade slightly if this term is used. The feature rank-
ing experiment (results in Table VII) also showed that the C, terms for
DCTC’s 4-7 affected classification rates very little.

¥ The experimental results mentioned in footnote 6 show that the burst con-
tains some vowel information. Visual inspection of many samples of the
burst spectra also indicated that the vowel strongly influences the spectra.
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9For all confusion matrices, the rows are stimuli intended by the talker.
Columns are stimuli identified by the listeners.
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